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Unprecedented changes occurring rapidly… 
across multiple dimensions
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Technologies
• Uber, Lyft, car/bike-

sharing, etc.

• Long-range electric 
vehicles

• Autonomous vehicles, 
drones

• Virtual reality “travel” 
experiences

Societal shifts
• Delayed or deferred 

marriage and 
childbearing

• Greater education 

• Increasing ethnic 
diversity 

• Shifting values

Policy instruments
• Denser, more diverse 

land uses

• Changing revenue base 
away from fuel taxes

• Yet-to-be-determined 
AV policies



Improving behavioral forecasting 
Two approaches: functions or data 
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Behavioral 
decision-making

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑥𝑥𝑥𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓

functions:
• machine learning 
• latent variable models
• advanced discrete choice models

data:
• passive data streams

• big data: mobile phone 
location data, etc.

• active data streams
• survey data



Obtaining good survey data is getting harder… 
…and all evidence indicates this will continue
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Respondents have gotten
-- busier
-- more “jaded”
-- more distracted
As Large-scale surveys like the National 

Household Travel Survey (NHTS)
-- socio-economic characteristics 
-- observed travel behavior attributes 
-- across a nationwide sample
As 

ACS
As 

Census
As 

NHTS
As 

Finding a balance
in content

Smaller studies
-- broader set of variables
-- smaller samples
-- limited geographic areas
As 

Longer surveys 
→ lower response rates, 
→ increased survey bias
As 

depth
As 

breadth
As 



Large-scale household travel surveys
How can we get rich variables like attitudes into them?
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Respondents have gotten
-- busier
-- more “jaded”
-- more distracted
As 

Longer surveys 
→ lower response rates, 
→ increased survey bias
As 

Option 1: ask some attitudinal q’s on the survey itself
- easier said than done



Large-scale household travel surveys
How can we get rich variables like attitudes into them?
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Option 2: “transfer” the info from other surveys

National/regional surveys like NHTS
-- socio-economic characteristics 
-- observed travel behavior attributes 
-- sample drawn across a large area
As 

ACS
As 

Census
As 

NHTS
As 

Smaller studies
-- broader set of variables
-- smaller samples
-- limited geographic areas
As 

breadth
depth

depth
breadth

Taking information from richer studies could be useful for lots of difficult-
to-measure variable types (e.g. other psychometric variables)



GDOT emerging technologies survey
The smaller, variable-rich survey – the “donor” 
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 Purpose:
 To understand the impacts of 

emerging technologies and trends 
on travel behavior in Georgia (GA)

 Details:
 Conducted Fall 2017
 Invited sample: 15 MPO areas
 Current N ~ 3300

 Contents: 
 A : Attitudes and personality
 B : Technology usage
 C : Key aspects of lifestyle 
 D : How you travel
 E : Evolving transportation services
 F : Desires for future travel
 G : Autonomous vehicles
 H : Sociodemographic traits 



National Household Travel Survey (NHTS)
The national large-scale survey – the “recipient” 
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 Purpose:
 To support travel demand modeling & long-

range transportation planning across U.S.

 Details: 
 Repeated cross-sectional travel behavior 

survey
 Georgia subsample used in this study
 Wave: April 2016 to May 2017 
 Original N ~ 8632 (GA respondents)

 Contents: 
 Household data module
 Long distance module
 Vehicle data module
 Person level module
 Person trips module
 Person health module
 Person drive module

Georgia subsample of 
2016-17 NHTS respondents



Expanding transportation survey datasets
Using common variables to transfer attitudes
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𝐴𝐴𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐶𝐶𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 , 𝑃𝑃𝐴𝐴𝑎𝑎𝐶𝐶𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝜀𝜀𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
�𝐴𝐴𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝐹𝐹𝑓𝑓𝐹𝐹𝑓𝑓𝑡𝑡 = 𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝐺𝐺𝑁𝑁 , 𝑃𝑃𝐴𝐴𝑎𝑎𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝐺𝐺𝑁𝑁



Expanding transportation survey datasets
Components of transfer process
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• Transfer variables: variables of interest being transferred across datasets

• Features: inputs to the training algorithm that are used to model/predict 
the transfer variables

• Training algorithms: used to transfer the variables across datasets



Components of the transfer process
Transfer variables
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• Transfer variables: variables of interest being transferred across datasets

• Features: inputs to the training algorithm that are used to model/predict 
the transfer variables

• Training algorithms: used to transfer the variables across datasets

Transfer / 
dependent 
variables

Training 
algorithms / 

functions

Features / 
independent 

variables

• Dataset integration
• Pre-processing
• Dimension 

reduction
• Basis expansion

• Varied algorithms 
• Hyperparameter 

tuning
• Training/test set 

sizes
• Performance metrics

• Variable 
form/transformation

• Dimension reduction and/ 
or latent variable 
identification methods



Transfer variables
Introducing the attitudinal variables for transfer

13

Name Example statement

Tech Savvy Learning how to use new technologies is often frustrating for me (-)

Work-oriented … having fun is more important to me than working hard (-)

Pro-exercise I am committed to exercising regularly

Materialistic I would/do enjoy having a lot of luxury things

Family-oriented Family/friends play a big role in how I schedule my time

Pro-suburban I prefer to live in a spacious home, even if it’s farther away ...

Urbanite I like … having stores, … mixed among the homes in my n’hood

Non Car Mode I like the idea of walking [bicycling, PT] as a means of travel for me

Commute Benefit My commute is a useful transition between home and work

Travel Liking I generally enjoy the act of traveling itself

Car-owning I definitely want to own a car

Polychronic I prefer to do one thing at a time (-)

Wait Tolerant Having to wait is an annoying waste of time (-)

Environmental Cost or convenience takes priority over environmental impacts … (-)

Sociable I consider myself to be a sociable person

Lifestyle

Land use

Travel

Personality



Components of the transfer process
Features
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• Transfer variables: variables of interest being transferred across datasets

• Features: inputs to the training algorithm that are used to model/predict 
the transfer variables

• Training algorithms: used to transfer the variables across datasets

Transfer / 
dependent 
variables

Training 
algorithms / 

functions

Features / 
independent 

variables

• Dataset integration
• Pre-processing
• Dimension 

reduction
• Basis expansion

• Varied algorithms 
• Hyperparameter 

tuning
• Training/test set 

sizes
• Performance metrics

• Variable 
form/transformation

• Dimension reduction and/ 
or latent variable 
identification methods



Features
Two types of features available for use
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NHTS
As 

Survey Data Streams

GDOT Emerging 
Technologies Survey

N ~ 3000

External Data Streams

National Household Travel Survey
Georgia Subsample

N ~ 8000

Targeted Marketing Data
N ~ 6000

Native common variables  
– active data sources

Augmented common variables 
– passive/active data sources

• Exist initially in both datasets
• Tend to be SED variables 
• Often must be adjusted and recoded across 

sources

• Obtained from external active or passive 
datasets

• Must be appended to both the donor and 
recipient datasets at either:

• Household level
• Individual level
• Geographic level

Census
As 

ACS
As 

Land Use 
Data

All Transit 
Data



Components of the transfer process
Algorithms
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• Transfer variables: variables of interest being transferred across datasets

• Features: inputs to the training algorithm that are used to model/predict 
the transfer variables

• Training algorithms: used to transfer the variables across datasets

Transfer / 
dependent 
variables

Training 
algorithms / 

functions

Features / 
independent 

variables

• Dataset integration
• Pre-processing
• Dimension 

reduction
• Basis expansion

• Varied algorithms 
• Hyperparameter 

tuning
• Training/test set 

sizes
• Performance metrics

• Variable 
form/transformation

• Dimension reduction and/ 
or latent variable 
identification methods



Algorithms
Possible variations within algorithm selection process
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• Algorithm selection
• Linear regression, random forest, support vector machine, elastic net 

regression, lasso regression, ridge regression, random forest, extreme 
gradient boosting 

• Algorithm tuning
• Training/test sample split: 80/20
• Hyperparameter tuning using k-fold cross validation 
• Final metrics on test/hold-out sample

• Algorithm performance
• Possible metrics: R-squared, correlations (between observed and 

predicted), mean squared error, misclassification error, etc.



How well are we transferring variables?
Internal validation
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Are the transferred variables any good?
External validation:
How much are they helping in travel behavior models?

27Explanatory variables

Dependent variables



What will we be modeling for external validation?
Atlanta region: Ridehailing frequency
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GDOT Survey

NHTS

Never /
no longer 

use

Do use

Never /
no longer 

use

Do use



How much are the transferred variables helping?
External validation: linear regression, R2 values
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Observed atts: 50% lift
Predicted atts: 30% lift

GDOT Survey

NHTS

33% model lift with 
predicted attitudes!
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How much are the transferred variables helping?
Ext. validation: prediction accuracies for choice models
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GDOT Survey

NHTS
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LCCM: Latent Class Choice Model



Latent class choice model of ridehailing adoption

A preliminary look at some insights!
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• Travel liking class
• Family-oriented & car-owning
• Urbanite & tech-savvy

Predictors Travel-
liking

Family-
oriented Urbanite

Education -- (+) * (+) **

Age (-)*** (-) * (-) **

Household income (+) *** -- --
Household size -- (-) * (-) **

Emergent 
classes

Choice model

GDOT model w/ observed attitudes: three latent classes

Benefits:
• Improved predictive accuracy
• Nuanced interpretation
• Slight increase in model fit 

Will the predicted attitudes 
yield similar benefits for GDOT 
and NHTS?



Study overview
The process in a nutshell…
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Study overview
Takeaways
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• We can impute attitudes reasonably well!
• …and we’re getting better

• Attitudes improve:
• Model fit
• Model interpretability
• Predictive accuracy (small increases)

• And interpretations improve:
• Latent class choice models of travel behavior in demand forecasting 

models!
• Policy implications of more nuanced segments



Study overview
Looking to the future
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• In the short-term: let’s use what we have!
• Use trained algorithm to predict attitudes into Atlanta Household Travel 

Survey
• How does it affect the final outcomes?

• Is it moving the outcome in the same direction as the adjustment 
factors?

• In the medium-term: let’s get better at predicting attitudes
• Continued refinement of machine learning models
• Additional common variables purchased and integrated into attitudinal 

prediction functions

• In the long-term: let’s talk attitudinal variables!
• Attitudinal marker statements that could be included on future household 

travel surveys
• Can help us obtain improved predictions of attitudes
• Can be used directly to improve our travel demand models 
• Will not be highly correlated with other explanatory variables



Thank you!
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