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B P ANNING INTERVENTIONS OPERATE Nl Materias

ON AND WITHIN COMPLEX SYSTEMS

Simulation models of these
systems tend to be complex and
structural in nature, to support
counter-factual analysis.

Interpretation and causal
reasoning is prized over predictive
accuracy.

builders

Size of
builders

M

Industry% structure Other factor costs

Financing

Supply/price of

B : Construction costs
existing housing \
Physical site constraints

Public services
Cost of land Tax pplicy
PRICE OF NEW Zoning

HOUSING Parcelization
Supply of /
Demand for land uldable land

Other public policy
Changes in real

income

Demand for space Demographics

\ Housing characteristics
preferences . .
Socioeconomic

characteristics
Population and Rate of National
employment household economic
growth formation factors



Bl STATISTICAL MODELS VS MACHINE LEARNING

Statistical models for regression, discrete choice

« Dominant for transport & land use modeling
« Causal interpretation (with caveats)
« Favored for counter-factual analysis

Machine Learning models for regression, classification

« Excel at predictive accuracy

* Handle big data and nonlinear relationships
« Methods to avoid overfitting

« Lower interpretability



Bl USE CASE FOR ML IN URBAN SIMULATION MODELS

Hedonic Regression of Rents

« 360K Craigslist listings for San Francisco Bay Area from 2017-18
« Parsimonious covariates, focused on accessibility and spatial context

Rent Predictions used to Bootstrap Structural Model

« Discrete choice of housing demand by tenure (within year) depends on rents
« Fixed housing supply (within year)

* Bootstrap prices and rents adjust to clear the market (within year)

* Pro forma model of housing supply (between years) depends on rents

Predictive Accuracy of Bootstrap Rents Outweighs Interpretability



Bl DEPENDENT VARIABLE: CRAIGSLIST RENTS PER SQUARE FOOT
PREDICTORS: NETWORK AGGREGATION QUERIES

count mean std min 25% 50% 75% max

rent_sqgft 363010.0 3.0 1.0 0.0 2.0 3.0 4.0 11.0
res_sqft_per_unit 363010.0 994.0 430.0 212.0 710.0 904.0 1150.0 3600.0
units_500_walk 363010.0 664.0 662.0 0.0 193.0 437.0 876.0 2317.0
sqft_unit_500_walk 363010.0 1455.0 712.0 0.0 1059.0 1436.0 1803.0 3699.0

rich_500_walk 363010.0 133.0 148.0 0.0 27.0 81.0 166.0 528.0
singles_500_walk 363010.0 201.0 254.0 0.0 35.0 101.0 228.0 868.0
elderly_hh_500_walk 363010.0 92.0 102.0 0.0 21.0 56.0 117.0 363.0
children_500_walk 363010.0 226.0 189.0 0.0 79.0 186.0 327.0 755.0
jobs_500_walk 363010.0 759.0 1295.0 0.0 43.0 220.0 748.0 5247.0

jobs_1500_walk 363010.0 6589.0 8770.0 0.0 1206.0 3110.0 7220.0 32501.0
jobs_10000 363010.0 165285.0 117970.0 0.0 74380.0 127551.0 236962.0 412326.0
jobs_25000 363010.0 498022.0 229898.0 37.0 322181.0 584284.0 696465.0 787748.0

pop_10000 363010.0 333207.0 191209.0 0.0 183445.0 300216.0 459446.0 763247.0
pop_black_10000 363010.0 14010.0 18451.0 0.0 2709.0 5754.0 20794.0 90219.0
pop_hisp_10000 363010.0 57468.0 42489.0 0.0 27776.0 45772.0 81072.0 201053.0
pop_asian_10000 363010.0 106511.0 77819.0 0.0 37199.0 93097.0 175019.0 282688.0

Note: variables are measured as network aggregations within 0.5, 1.5, 10 or 25 KM with Pandana
Data are for San Francisco Bay Area



Bl THE MODEL

m = OLSRegressionStep()

m.tables = ['rentals', 'nodessmall vars', 'nodeswalk vars']

m.filters = ['rent sqft < 10']

m.model expression = 'np.loglp(rent sqgft) ~ +
np.log(res_sqgft per unit) + \
np.log(units 500 walk+1l) + np.log(sqgft unit 500 walk+2) + \
np.log(rich 500 walk + 1) + np.log(singles 500 walk + 1) + \

np.log(elderly hh 500 walk + 1) + \

np.log(children 500 walk + 1) + \
np.log(jobs 500 walk + 1) + np.log(jobs 1500 walk+1l) + \
np.log(jobs 10000+1) + np.log(jobs 25000 + 1) + \
np.log(pop 10000+1) + np.log(pop black 10000+1) + \
np.log(pop hisp 10000+1) + \
np.log(pop _asian 10000+1) '

m.out column = 'pred rent sqft'

m.out transform = np.expml

m.name = 'hedonic_rent sqgft'

m.fit()

m.run()

mm.register(m)

Note: The OLS model is created, specified, fit, run, and registered (saved) using a new UrbanSim template library



Bl OLS RESULTS

Note: models were estimated using 2/3 of the data, retaining 1/3 to be used for validation

OLS Regression Results

Dep. Variable: np.loglp(rent_sqft) R-squared: 0.630
Model: OLS Adj. R-squared: 0.630
Method: Least Squares F-statistic: 2.745e+04
Date: Tue, 31 Jul 2018 Prob (F-statistic): 0.00
Time: 14:56:02 Log-Likelihood: 1.1327e+05
No. Observations: 242063 AIC: -2.265e+05
Df Residuals: 242047 BIC: -2.263e+05
Df Model: 15
Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]
Intercept 2.0244 0.013 155.472 0.000 1.999 2.050
np.log(res_sqft per unit) -0.3260 0.001 -399.046 0.000 -0.328 -0.324
np.log(units_500_walk + 1) -0.0154 0.001 -13.758 0.000 -0.018 -0.013
np.log(sgft unit 500 walk + 2) -0.0052 0.000 -14.193 0.000 -0.006 -0.004
np.log(rich 500 walk + 1) 0.0602 0.000 121.972 0.000 0.059 0.061
np.log(singles 500 walk + 1) 0.0141 0.001 19.289 0.000 0.013 0.016
np.log(elderly hh 500 _walk + 1) 0.0096 0.001 17.867 0.000 0.009 0.011
np.log(children 500 walk + 1) -0.0510 0.001 -83.843 0.000 -0.052 -0.050
np.log(jobs 500 walk + 1) 0.0106 0.000 42.812 0.000 0.010 0.011
np.log(jobs 1500 walk + 1) 0.0016 0.000 5.778 0.000 0.001 0.002
np.log(jobs_ 10000 + 1) 0.0329 0.001 33.964 0.000 0.031 0.035
np.log(jobs 25000 + 1) 0.0916 0.001 102.946 0.000 0.090 0.093
np.log(pop 10000 + 1) 0.0673 0.002 34.157 0.000 0.063 0.071
np.log(pop_black 10000 + 1) -0.0163 0.000 -44.192 0.000 -0.017 -0.016
np.log(pop_hisp 10000 + 1) -0.0386 0.001 -50.321 0.000 -0.040 -0.037
np.log(pop_asian 10000 + 1) -0.0272 0.001 -39.281 0.000 -0.029 -0.026
Omnibus: 21555.547 Durbin-Watson: 0.780
Prob(Omnibus): 0.000 Jarque-Bera (JB): 104004.384
Skew: -0.310 Prob(JB): 0.00
Kurtosis: 6.151 Cond. No. 1.39e+03




B E| ASTICITIES

Variable Elasticity

Residential Sqft per unit -0.33
Jobs within 25 kilometers 0.09
Population within 10 kilometers 0.07

Rich households within 1/2 kilometer 0.06

Children within 1/2 kilometer -0.05




Bl REGRESSION TREE




Il RANDOM FOREST

RF handles non-linear relationships
between the dependent and
independent variables

RF is invariant to scaling and translation

RF is robust to irrelevant or highly
correlated variables

Original
Training data

Step 2:
Use random
vector to
build multiple
decision trees

Step 3:
Combine
decision trees

Step 1:

Create random

vectors




Bl RANDOM FOREST

Variable Importance in Random Forest Model
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B DISTRIBUTION OF RESIDUALS

OLS Random Forest

Frequency
Frequency

0000000000

0 0
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Note: models were estimated using 2/3 of the data, retaining 1/3 for validation



Il PREDICTED VS OBSERVED

Predicted Values

OLS

R Squared .63

4 6
Observed Values

Predicted Values

Random Forest

Accuracy Score .96

4 6
Observed Values




B SPATIAL RANDOMNESS OF ERRORS

Random Forest

Blue areas are under-predicted, red areas are over-predicted
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MOTIVATING URBANSIM CALIBRATION

How do we get UrbanSim, a small-area model of urban growth typically
estimated off of cross-sectional data, to approximate longitudinal
observed data on urban growth?

Can we do it without dampening the model’s behavioral sensitivities?
e.g. minimize geographic dummies and constants



B TYPICAL GOALS OF MODEL CALIBRATION

*  Move relative spatial variation of simulated growth towards observed longitudinal patterns
* Proxy for unobserved costs and variables not accounted for by the models as specified
* Incorporate more information from longitudinal data (model estimation is based on

cross-sectional data)

Long-range
Use observed data forecazsot lbseyond

at coarser Use observed data

Base-year data geography at small-area level
2010 2013 2015

Calibration period Validation period
2011 - 2013 2013 - 2015
I I I I

2011 2012 2013 2014 2015

2010 2015



B CALIBRATION

Input: BaIe data

Weights T UrbanSim model
l S Longitudinal data
Weight Predicted spatial Observed spatial
update patterns patterns
Optimizer

A loss function measures the
quality of the UrbanSim
model’s output. The loss score
is used as a feedback signal to
adjust the weights.

Loss score }




I VODEL CALIBRATION

Infer UrbanSim parameters that would minimize error
vs. observed longitudinal data.

Vancouver Vancouver Vancouver

2016 2017 2018 mse(predictions,
longitudinal _observed)




URBANSIM SIMULATION: “FORWARD MODE"

0 X

UrbanSim . UrbanSim model > Generated

parameters sequences of

I I I urban data

VANCOUVER




CALIBRATION

Simulation over time

9 X

UrbanSim UrbanSim model

> Compare
parameters generated

sequences of

| urban data with
observed

VANCOUVER longitudinal
data

A 4

Inference




ll OUR CURRENT APPROACH

e Frame UrbanSim as a differentiable function
e Add objective function and utilize auto-differentiation libraries to get gradients
e Apply gradient descent

How: reimplementing UrbanSim modules in “differentiable programming” frameworks



ll URBAN MODELS MEET DIFFERENTIABLE PROGRAMMING

Ahead-of-time autodiff

* |

TensorFlow Swift for TensorFlow

S %) Zygote

O P)/TO rC h Model is a »  Model is

Data Structure Code
Torch

TF Eager
PyTorch
Autograd

Chainer

 /

Runtime autodiff

Different approaches and styles of modern deep learning libraries.
Not drawn to scale!



Bl EXAMPLE OF A COMPUTATIONAL GRAPH IN URBANSIM

logits = np.dot(w, X) + b

exp utility = np.exp(logits)

sum _expu across submodels = np.sum(exp utility, axis=1, keepdims=True)
probas = exp utility / sum _expu_across submodels

@ &

multiply

© o

sum divide




Bl EXAMPLE OF A COMPUTATIONAL GRAPH IN URBANSIM

Forward pass >

multiply

o o

< Backward pass

exp divide ——

/‘




ll URBAN DYNAMICS AS A RECURRENT SEQUENCE

Region Region Region Region Region Calculate
2016 2017 2018 2049 2050 Indicators

Model Model Model Model

Output
RNN RNN RNN

(t-1) (t) (t+1)

I .

Input




[l PROBAFLOW: LIBRARY FOR SPECIFYING/TRAINING DIFFERENTIABLE MODELS

Probaflow

auto-diff libraries

e Some auto-diff libraries take python code and can compile to
lower-level representation for hardware acceleration

e Trace gradients through programs, so probaflow-composed
models are end-to-end differentiable




Multi-geographic-level optimization. E.g. county + municipality + tract
Jointly optimize model components over multiple years (better
accounting for linkages between models so that overall dynamics are
smoother)

Sign constraints built-in: makes parameter estimation easier
Regularization default

Custom loss functions: build desirable properties of the simulation into
the loss used to train model

Multi-region learning + transfer learning



B M ODEL VALIDATION

STRATEGIES:

Compare model results to observed data
Sensitivity tests

LONGITUDINAL VALIDATION (BACKCASTING) EXAMPLE:

Observed tract change:

Change in number of households by tract, 2010 - 2015

Change in number of dwelling units by tract, 2010 - 2015

Change in employment by tract, 2010 - 2015

Change in non-residential square-footage by tract, 2010 - 2015
Model base-year: 2010

Simulate 2010 - 2015, compare observed tract change vs simulated,
calculate prediction R2 / RMSE



B \/ANCOUVER URBANSIM APPLICATION: VALIDATION

UrbanSim models are validated by running simulations from 2006 — 2016 and comparing simulated to observed data by Census Subdivision

0.20 1

=4
-
wn

sim_prop

0.05 1

0.00 1

0.25

0.20 4

(=]
ot
(5]

sim_prop

0.10 1

0.05 1

0.00 1

=]
ot
o

Change in Housing Units 2006 - 2016
Observed vs Predicted
Correlation: .98

sim_prop

*
L4
® L]
L}
0.00 0.05 0.10 0.15 020 0.25
units_target
Change in Employment 2006 - 2016 *
Observed vs Predicted
Correlation: .98
-
*
»>
L
. *
o
[ ]
¥
000 005 010 015 020 025 030

emp_valid_target

0.20 4

0.15 1

[=]
-
(=]

0.05 4

0.00 4

N
N

= g
] o

-
-

mean_price_change_06_16
'—l
(=2}

-
N

[
o

Change in Households 2006 - 2016
Observed vs Predicted
Correlation: .98

o o
%
e
B
>
0.00 0.05 010 0.15 0.20 0.25

hh_target

| Change in Housing Prices 2006 - 2016 ,
| Observed vs Predicted

Correlation: .69 o .
- PR
@ . 0: .
o -
... ° :
*
e ., B
*
*
*
* L N

075 100 125 150 175 200 225 250
sim_multiplier

T

275




01 ML Hedonic Models to Bootstrap Price Predictions

02 Difterentiable Models for Calibration and Price Equilibration

03 GPU based Traffic Microsimulation



Bl GPU-BASED TRAFFIC MICROSIMULATION AT METROPOLITAN SCALE

Bay Area network (derived from
OSM/OSMnx)

223K nodes
560K edges




Bl GPU-BASED TRAFFIC MICROSIMULATION AT METROPOLITAN SCALE

COTE e - () - (R ey
Pandana library using ab T s K — Vuber
Contraction Hierarchies for =l
Fast Computation of Callration lossovertime

035

Shortest Paths

o
N
v

GPU Traffic Microsimulation

)

Road Network Traffic Atlas

(delta b/w mean Uber and microsim speeds)

Calibration using minibatch gradient descent

m, = {exP(_(xi - %)% x> X

Traffic Atlas. 1 Xi < X



Il GPU-BASED TRAFFIC MICROSIMULATION: VALIDATION
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Bl GPU-BASED TRAFFIC MICROSIMULATION: PERFORMANCE

MANTA benchmarking | RAM usage (GB)

# Nodes: 223329
# Edges: 547698
# Trips: 7412638

Load network
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Bl GPU-BASED TRAFFIC MICROSIMULATION: PERFORMANCE

Load network

Load OD demand

Routing CH

CH output conv.

Routes conv. to GPU

Lane Map creation

Microsimulation in GPU

File output
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Total: 1179.63 secs (19.66 mins)
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03

Opportunities for leveraging ML to improve urban models

Ditterentiable programming offers strategy to improve
longitudinal calibration without loss of sensitivity

GPU based Traffic Microsimulation has significant potential
to improve realism, performance, scale of microsimulation
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