Applied Urban Modeling November 30, 2020

Using Machine Learning and GPU Processing to Build Faster and More Accurate Integrated Models

Paul Waddell

Professor, City and Regional Planning University of California, Berkeley Director, Urban Analytics Lab President, UrbanSim Inc.

- 01 ML Hedonic Models to Bootstrap Price Predictions
- 02 Differentiable Models for Calibration and Price Equilibration
- 03 GPU based Traffic Microsimulation

PLANNING INTERVENTIONS OPERATE ON AND WITHIN COMPLEX SYSTEMS

Simulation models of these systems tend to be complex and structural in nature, to support counter-factual analysis.

Interpretation and causal reasoning is prized over predictive accuracy.

Statistical models for regression, discrete choice

- Dominant for transport & land use modeling
- Causal interpretation (with caveats)
- Favored for counter-factual analysis

Machine Learning models for regression, classification

- Excel at predictive accuracy
- Handle big data and nonlinear relationships
- Methods to avoid overfitting
- Lower interpretability

Hedonic Regression of Rents

- 360K Craigslist listings for San Francisco Bay Area from 2017-18
- Parsimonious covariates, focused on accessibility and spatial context

Rent Predictions used to Bootstrap Structural Model

- Discrete choice of housing demand by tenure (within year) depends on rents
- Fixed housing supply (within year)
- Bootstrap prices and rents adjust to clear the market (within year)
- Pro forma model of housing supply (between years) depends on rents

Predictive Accuracy of Bootstrap Rents Outweighs Interpretability

DEPENDENT VARIABLE: CRAIGSLIST RENTS PER SQUARE FOOT PREDICTORS: NETWORK AGGREGATION QUERIES

	count	mean	std	min	25%	50%	75%	max
rent_sqft	363010.0	3.0	1.0	0.0	2.0	3.0	4.0	11.0
res_sqft_per_unit	363010.0	994.0	430.0	212.0	710.0	904.0	1150.0	3600.0
units_500_walk	363010.0	664.0	662.0	0.0	193.0	437.0	876.0	2317.0
sqft_unit_500_walk	363010.0	1455.0	712.0	0.0	1059.0	1436.0	1803.0	3699.0
rich_500_walk	363010.0	133.0	148.0	0.0	27.0	81.0	166.0	528.0
singles_500_walk	363010.0	201.0	254.0	0.0	35.0	101.0	228.0	868.0
elderly_hh_500_walk	363010.0	92.0	102.0	0.0	21.0	56.0	117.0	363.0
children_500_walk	363010.0	226.0	189.0	0.0	79.0	186.0	327.0	755.0
jobs_500_walk	363010.0	759.0	1295.0	0.0	43.0	220.0	748.0	5247.0
jobs_1500_walk	363010.0	6589.0	8770.0	0.0	1206.0	3110.0	7220.0	32501.0
jobs_10000	363010.0	165285.0	117970.0	0.0	74380.0	127551.0	236962.0	412326.0
jobs_25000	363010.0	498022.0	229898.0	37.0	322181.0	584284.0	696465.0	787748.0
pop_10000	363010.0	333207.0	191209.0	0.0	183445.0	300216.0	459446.0	763247.0
pop_black_10000	363010.0	14010.0	18451.0	0.0	2709.0	5754.0	20794.0	90219.0
pop_hisp_10000	363010.0	57468.0	42489.0	0.0	27776.0	45772.0	81072.0	201053.0
pop_asian_10000	363010.0	106511.0	77819.0	0.0	37199.0	93097.0	175019.0	282688.0

Note: variables are measured as network aggregations within 0.5, 1.5, 10 or 25 KM with Pandana Data are for San Francisco Bay Area

THE MODEL

```
m = OLSRegressionStep()
m.tables = ['rentals', 'nodessmall vars', 'nodeswalk vars']
m.filters = ['rent sqft < 10']</pre>
m.model expression = 'np.log1p(rent sqft) ~ +
    np.log(res sqft per unit) + \
    np.log(units 500 walk+1) + np.log(sqft unit 500 walk+2) + \
    np.log(rich 500 walk + 1) + np.log(singles 500 walk + 1) + \setminus
             np.log(elderly hh 500 walk + 1) + \setminus
    np.log(children 500 walk + 1) + \setminus
    np.log(jobs 500 walk + 1) + np.log(jobs_1500_walk+1) + \
    np.log(jobs 10000+1) + np.log(jobs 25000 + 1) + 
    np.log(pop 10000+1) + np.log(pop black 10000+1) + \setminus
    np.log(pop hisp 10000+1) + \
    np.log(pop asian 10000+1)
m.out column = 'pred rent sqft'
m.out transform = np.expm1
m.name = 'hedonic rent sqft'
m.fit()
m.run()
mm.register(m)
```

Note: The OLS model is created, specified, fit, run, and registered (saved) using a new UrbanSim template library

Dep. Variable: np.1 Model: Method: Date: T Time: No. Observations: Df Residuals: Df Model: Covariance Type:	oglp(rent_sqft) OLS Least Squares ue, 31 Jul 2018 14:56:02 242063 242047 15 nonrobust	R-sc Adj F-st Prob Log- AIC BIC	quared: . R-squared tatistic: o (F-statis -Likelihood : :	d: stic): d:	0.630 0.630 2.745e+04 0.00 1.1327e+05 -2.265e+05 -2.263e+05		
	c	oef	std err	t	P> t	[0.025	0.975]
Intercept	2.0	 244	0.013	155.472	0.000	1.999	2.050
np.log(res sqft per uni	t) -0.3	260	0.001	-399.046	0.000	-0.328	-0.324
np.log(units 500 walk +	1) -0.0	154	0.001	-13.758	0.000	-0.018	-0.013
np.log(sqft_unit_500_wa	1k + 2) -0.0	052	0.000	-14.193	0.000	-0.006	-0.004
np.log(rich_500_walk +	1) 0.0	602	0.000	121.972	0.000	0.059	0.061
np.log(singles_500_walk	+ 1) 0.0	141	0.001	19.289	0.000	0.013	0.016
np.log(elderly_hh_500_w	alk + 1) 0.0	096	0.001	17.867	0.000	0.009	0.011
np.log(children_500_wal	k + 1) -0.0	510	0.001	-83.843	0.000	-0.052	-0.050
np.log(jobs_500_walk +	1) 0.0	106	0.000	42.812	0.000	0.010	0.011
np.log(jobs_1500_walk +	1) 0.0	016	0.000	5.778	0.000	0.001	0.002
$np.log(jobs_10000 + 1)$	0.0	329	0.001	33.964	0.000	0.031	0.035
$np.log(jobs_25000 + 1)$	0.0	916	0.001	102.946	0.000	0.090	0.093
$np.log(pop_10000 + 1)$	0.0	673	0.002	34.157	0.000	0.063	0.071
np.log(pop_black_10000	+ 1) -0.0	163	0.000	-44.192	0.000	-0.017	-0.016
np.log(pop_hisp_10000 +	1) -0.0	386	0.001	-50.321	0.000	-0.040	-0.037
np.log(pop_asian_10000	+ 1) -0.0	272	0.001	-39.281	0.000	-0.029	-0.026
Omnibus:	21555.547	5.547 Durbin-V			0.780		
Prob(Omnibus):	0.000	Jarqu	ue-Bera (JI	3):	104004.384		
Skew:	-0.310	Prob	(JB):		0.00		
Kurtosis:	6.151	Cond	. No.		1.39e+03		

OLS Regression Results

OLS RESULTS

Note: models were estimated using 2/3 of the data, retaining 1/3 to be used for validation

ELASTICITIES

Variable	Elasticity
Residential Sqft per unit	-0.33
Jobs within 25 kilometers	0.09
Population within 10 kilometers	0.07
Rich households within 1/2 kilometer	0.06
Children within 1/2 kilometer	-0.05

REGRESSION TREE

RANDOM FOREST

RF handles non-linear relationships between the dependent and independent variables

RF is invariant to scaling and translation

RF is robust to irrelevant or highly correlated variables

RANDOM FOREST

DISTRIBUTION OF RESIDUALS

Note: models were estimated using 2/3 of the data, retaining 1/3 for validation

PREDICTED VS OBSERVED

SPATIAL RANDOMNESS OF ERRORS

OLS

Random Forest

Blue areas are under-predicted, red areas are over-predicted

- 01 ML Hedonic Models to Bootstrap Price Predictions
- 02 Differentiable Models for Calibration and Price Equilibration
- 03 GPU based Traffic Microsimulation

MOTIVATING URBANSIM CALIBRATION

How do we get UrbanSim, a small-area model of urban growth typically estimated off of cross-sectional data, to approximate longitudinal observed data on urban growth?

Can we do it without dampening the model's behavioral sensitivities? e.g. minimize geographic dummies and constants

TYPICAL GOALS OF MODEL CALIBRATION

- Move relative spatial variation of simulated growth towards observed longitudinal patterns
- Proxy for unobserved costs and variables not accounted for by the models as specified
- Incorporate more information from longitudinal data (model estimation is based on cross-sectional data)

MODEL CALIBRATION

Infer UrbanSim parameters that would minimize error vs. observed longitudinal data.

URBANSIM SIMULATION: "FORWARD MODE"

CALIBRATION

OUR CURRENT APPROACH

- Frame UrbanSim as a differentiable function
- Add objective function and utilize auto-differentiation libraries to get gradients
- Apply gradient descent

How: reimplementing UrbanSim modules in "differentiable programming" frameworks

URBAN MODELS MEET DIFFERENTIABLE PROGRAMMING

EXAMPLE OF A COMPUTATIONAL GRAPH IN URBANSIM

logits = np.dot(w, x) + b
exp_utility = np.exp(logits)
sum_expu_across_submodels = np.sum(exp_utility, axis=1, keepdims=True)
probas = exp_utility / sum_expu_across_submodels

EXAMPLE OF A COMPUTATIONAL GRAPH IN URBANSIM

URBAN DYNAMICS AS A RECURRENT SEQUENCE

PROBAFLOW: LIBRARY FOR SPECIFYING/TRAINING DIFFERENTIABLE MODELS

- Some auto-diff libraries take python code and can compile to lower-level representation for hardware acceleration
- Trace gradients through programs, so probaflow-composed models are end-to-end differentiable

PROBAFLOW CAPABILITIES

- Multi-geographic-level optimization. E.g. county + municipality + tract
- Jointly optimize model components over multiple years (better accounting for linkages between models so that overall dynamics are smoother)
- Sign constraints built-in: makes parameter estimation easier
- Regularization default
- Custom loss functions: build desirable properties of the simulation into the loss used to train model
- Multi-region learning + transfer learning

MODEL VALIDATION

STRATEGIES:

- Compare model results to observed data
- Sensitivity tests

LONGITUDINAL VALIDATION (BACKCASTING) EXAMPLE:

Observed tract change:

Change in number of households by tract, 2010 - 2015

Change in number of dwelling units by tract, 2010 - 2015

Change in employment by tract, 2010 - 2015

Change in non-residential square-footage by tract, 2010 - 2015

Model base-year: 2010

Simulate 2010 - 2015, compare observed tract change vs simulated,

calculate prediction R2 / RMSE

VANCOUVER URBANSIM APPLICATION: VALIDATION

UrbanSim models are validated by running simulations from 2006 – 2016 and comparing simulated to observed data by Census Subdivision

- 01 ML Hedonic Models to Bootstrap Price Predictions
- 02 Differentiable Models for Calibration and Price Equilibration
- 03 GPU based Traffic Microsimulation

GPU-BASED TRAFFIC MICROSIMULATION AT METROPOLITAN SCALE

Bay Area network (derived from OSM/OSMnx) 223K nodes 560K edges

GPU-BASED TRAFFIC MICROSIMULATION AT METROPOLITAN SCALE

Pandana library using Contraction Hierarchies for Fast Computation of Shortest Paths

Iteration

GPU Traffic Microsimulation

Calibration using minibatch gradient descent

GPU-BASED TRAFFIC MICROSIMULATION: VALIDATION

Closely match Uber movement speed data per edge, even with oversimplified intersection traffic controls

Edge speed limit and Uber standard deviations (2x) used to model Uber distributions more closely

GPU-BASED TRAFFIC MICROSIMULATION: PERFORMANCE

GPU-BASED TRAFFIC MICROSIMULATION: PERFORMANCE

Total: 1179.63 secs (19.66 mins)

CONCLUSIONS

- 01 Opportunities for leveraging ML to improve urban models
- 02 Differentiable programming offers strategy to improve longitudinal calibration without loss of sensitivity
- 03 GPU based Traffic Microsimulation has significant potential to improve realism, performance, scale of microsimulation

