
Professor, City and Regional Planning

University of California, Berkeley

Director, Urban Analytics Lab

President, UrbanSim Inc.

Using Machine Learning and GPU
Processing to Build Faster and
More Accurate Integrated Models

Paul Waddell

Applied Urban Modeling
November 30, 2020

ML Hedonic Models to Bootstrap Price Predictions

Differentiable Models for Calibration and Price Equilibration

GPU based Traffic Microsimulation

AGENDA

01

02

03

Number of
builders

Size of
builders Other

Industry% structure

Supply/price of
existing housing

Demand for land

PRICE OF NEW
HOUSING

Demand for space

Population and
employment

growth

Rate of
household
formation

National
economic

factors

Housing
preferences

Changes in real
income

Demographics
characteristics

Socioeconomic
characteristics

Supply of
buildable land

Cost of land

Physical site constraints
Public services

Tax policy
Zoning

Parcelization
Other public policy

Construction costs

Other factor costs

FinancingLabor

Materials

Simulation models of these
systems tend to be complex and
structural in nature, to support
counter-factual analysis.

Interpretation and causal
reasoning is prized over predictive
accuracy.

PLANNING INTERVENTIONS OPERATE
ON AND WITHIN COMPLEX SYSTEMS

Statistical models for regression, discrete choice

• Dominant for transport & land use modeling
• Causal interpretation (with caveats)
• Favored for counter-factual analysis

Machine Learning models for regression, classification

• Excel at predictive accuracy
• Handle big data and nonlinear relationships
• Methods to avoid overfitting
• Lower interpretability

STATISTICAL MODELS VS MACHINE LEARNING

Hedonic Regression of Rents

• 360K Craigslist listings for San Francisco Bay Area from 2017-18
• Parsimonious covariates, focused on accessibility and spatial context

Rent Predictions used to Bootstrap Structural Model

• Discrete choice of housing demand by tenure (within year) depends on rents
• Fixed housing supply (within year)
• Bootstrap prices and rents adjust to clear the market (within year)
• Pro forma model of housing supply (between years) depends on rents

Predictive Accuracy of Bootstrap Rents Outweighs Interpretability

USE CASE FOR ML IN URBAN SIMULATION MODELS

Note: variables are measured as network aggregations within 0.5, 1.5, 10 or 25 KM with Pandana
Data are for San Francisco Bay Area

DEPENDENT VARIABLE: CRAIGSLIST RENTS PER SQUARE FOOT
PREDICTORS: NETWORK AGGREGATION QUERIES

Note: The OLS model is created, specified, fit, run, and registered (saved) using a new UrbanSim template library

THE MODEL

m = OLSRegressionStep()
m.tables = ['rentals', 'nodessmall_vars', 'nodeswalk_vars']
m.filters = ['rent_sqft < 10']
m.model_expression = 'np.log1p(rent_sqft) ~ +

np.log(res_sqft_per_unit) + \
np.log(units_500_walk+1) + np.log(sqft_unit_500_walk+2) + \
np.log(rich_500_walk + 1) + np.log(singles_500_walk + 1) + \

np.log(elderly_hh_500_walk + 1) + \
np.log(children_500_walk + 1) + \
np.log(jobs_500_walk + 1) + np.log(jobs_1500_walk+1) + \
np.log(jobs_10000+1) + np.log(jobs_25000 + 1) + \
np.log(pop_10000+1) + np.log(pop_black_10000+1) + \
np.log(pop_hisp_10000+1) + \
np.log(pop_asian_10000+1) '

m.out_column = 'pred_rent_sqft'
m.out_transform = np.expm1
m.name = 'hedonic_rent_sqft'

m.fit()
m.run()
mm.register(m)

Note: models were estimated using 2/3 of the data, retaining 1/3 to be used for validation

OLS RESULTS

ELASTICITIES

Variable Elasticity

Residential Sqft per unit -0.33

REGRESSION TREE

RANDOM FOREST

RF handles non-linear relationships
between the dependent and
independent variables

RF is invariant to scaling and translation

RF is robust to irrelevant or highly
correlated variables

RANDOM FOREST

DISTRIBUTION OF RESIDUALS

OLS Random Forest

Note: models were estimated using 2/3 of the data, retaining 1/3 for validation

PREDICTED VS OBSERVED

OLS Random Forest

R Squared .63 Accuracy Score .96

SPATIAL RANDOMNESS OF ERRORS

OLS Random Forest

Blue areas are under-predicted, red areas are over-predicted

ML Hedonic Models to Bootstrap Price Predictions

Differentiable Models for Calibration and Price Equilibration

GPU based Traffic Microsimulation

AGENDA

01

02

03

How do we get UrbanSim, a small-area model of urban growth typically
estimated off of cross-sectional data, to approximate longitudinal
observed data on urban growth?

Can we do it without dampening the model’s behavioral sensitivities?
e.g. minimize geographic dummies and constants

MOTIVATING URBANSIM CALIBRATION

• Move relative spatial variation of simulated growth towards observed longitudinal patterns

• Proxy for unobserved costs and variables not accounted for by the models as specified

• Incorporate more information from longitudinal data (model estimation is based on

cross-sectional data)

TYPICAL GOALS OF MODEL CALIBRATION

UrbanSim modelWeights

Input: Base data

Predicted spatial
patterns

A loss function measures the
quality of the UrbanSim
model’s output. The loss score
is used as a feedback signal to
adjust the weights.

Observed spatial
patterns

Loss function

Loss score

Longitudinal data

Optimizer

Weight
update

CALIBRATION

Vancouver
2016

Model

Vancouver
2017

Model

Vancouver
2018

Infer UrbanSim parameters that would minimize error
vs. observed longitudinal data.

mse(predictions,
longitudinal_observed)

f(𝜃) =

MODEL CALIBRATION

UrbanSim modelUrbanSim
parameters

X
Generated
sequences of
urban data

URBANSIM SIMULATION: “FORWARD MODE”

UrbanSim modelUrbanSim
parameters

X
Compare
generated
sequences of
urban data with
observed
longitudinal
data

Simulation over time

Inference

CALIBRATION

● Frame UrbanSim as a differentiable function
● Add objective function and utilize auto-differentiation libraries to get gradients
● Apply gradient descent

How: reimplementing UrbanSim modules in “differentiable programming” frameworks

OUR CURRENT APPROACH

URBAN MODELS MEET DIFFERENTIABLE PROGRAMMING

w x

multiply

b

add

L exp e sum s divide p

EXAMPLE OF A COMPUTATIONAL GRAPH IN URBANSIM

w x

multiply

b

add

L exp e sum s divide

p

Forward pass

Backward pass

EXAMPLE OF A COMPUTATIONAL GRAPH IN URBANSIM

Region
2016

Model

Region
2017

Model

Region
2018

Model

Region
2049

Model

Region
2050

…..

Calculate
Indicators

URBAN DYNAMICS AS A RECURRENT SEQUENCE

● Some auto-diff libraries take python code and can compile to
lower-level representation for hardware acceleration

● Trace gradients through programs, so probaflow-composed
models are end-to-end differentiable

Probaflow

auto-diff libraries

CPU TPUGPU

PROBAFLOW: LIBRARY FOR SPECIFYING/TRAINING DIFFERENTIABLE MODELS

● Multi-geographic-level optimization. E.g. county + municipality + tract
● Jointly optimize model components over multiple years (better

accounting for linkages between models so that overall dynamics are
smoother)

● Sign constraints built-in: makes parameter estimation easier
● Regularization default
● Custom loss functions: build desirable properties of the simulation into

the loss used to train model
● Multi-region learning + transfer learning

PROBAFLOW CAPABILITIES

STRATEGIES:
• Compare model results to observed data
• Sensitivity tests

LONGITUDINAL VALIDATION (BACKCASTING) EXAMPLE:
Observed tract change:

Change in number of households by tract, 2010 - 2015

Change in number of dwelling units by tract, 2010 - 2015

Change in employment by tract, 2010 - 2015

Change in non-residential square-footage by tract, 2010 - 2015

Model base-year: 2010

Simulate 2010 - 2015, compare observed tract change vs simulated,

calculate prediction R2 / RMSE

MODEL VALIDATION

Change in Housing Units 2006 – 2016
Observed vs Predicted
Correlation: .98

Change in Households 2006 – 2016
Observed vs Predicted
Correlation: .98

Change in Employment 2006 – 2016
Observed vs Predicted
Correlation: .98

Change in Housing Prices 2006 – 2016
Observed vs Predicted
Correlation: .69

UrbanSim models are validated by running simulations from 2006 – 2016 and comparing simulated to observed data by Census Subdivision

VANCOUVER URBANSIM APPLICATION: VALIDATION

ML Hedonic Models to Bootstrap Price Predictions

Differentiable Models for Calibration and Price Equilibration

GPU based Traffic Microsimulation

AGENDA

01

02

03

Bay Area network (derived from
OSM/OSMnx)

223K nodes

560K edges

GPU-BASED TRAFFIC MICROSIMULATION AT METROPOLITAN SCALE

Pandana library using
Contraction Hierarchies for
Fast Computation of
Shortest Paths

GPU Traffic Microsimulation

GPU-BASED TRAFFIC MICROSIMULATION AT METROPOLITAN SCALE

Calibration using minibatch gradient descent

GPU-BASED TRAFFIC MICROSIMULATION: VALIDATION

Closely match Uber movement
speed data per edge, even with
oversimplified intersection traffic
controls

Edge speed limit and Uber
standard deviations (2x) used to
model Uber distributions more
closely

GPU-BASED TRAFFIC MICROSIMULATION: PERFORMANCE

GPU-BASED TRAFFIC MICROSIMULATION: PERFORMANCE

Opportunities for leveraging ML to improve urban models

Differentiable programming offers strategy to improve
longitudinal calibration without loss of sensitivity

GPU based Traffic Microsimulation has significant potential
to improve realism, performance, scale of microsimulation

CONCLUSIONS

01

02

03

Q&A

