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Simulation models of these 
systems tend to be complex and 
structural in nature, to support 
counter-factual analysis.

Interpretation and causal 
reasoning is prized over predictive 
accuracy.

PLANNING INTERVENTIONS OPERATE 
ON AND WITHIN COMPLEX SYSTEMS



Statistical models for regression, discrete choice

• Dominant for transport & land use modeling
• Causal interpretation (with caveats)
• Favored for counter-factual analysis

Machine Learning models for regression, classification

• Excel at predictive accuracy
• Handle big data and nonlinear relationships
• Methods to avoid overfitting
• Lower interpretability

STATISTICAL MODELS VS MACHINE LEARNING



Hedonic Regression of Rents

• 360K Craigslist listings for San Francisco Bay Area from 2017-18
• Parsimonious covariates, focused on accessibility and spatial context

Rent Predictions used to Bootstrap Structural Model

• Discrete choice of housing demand by tenure (within year) depends on rents
• Fixed housing supply (within year)
• Bootstrap prices and rents adjust to clear the market (within year)
• Pro forma model of housing supply (between years) depends on rents 

Predictive Accuracy of Bootstrap Rents Outweighs Interpretability

USE CASE FOR ML IN URBAN SIMULATION MODELS



Note: variables are measured as network aggregations within 0.5, 1.5, 10 or 25 KM with Pandana
Data are for San Francisco Bay Area

DEPENDENT VARIABLE: CRAIGSLIST RENTS PER SQUARE FOOT
PREDICTORS: NETWORK AGGREGATION QUERIES



Note: The OLS model is created, specified, fit, run, and registered (saved) using a new UrbanSim template library 

THE MODEL

m = OLSRegressionStep()
m.tables = ['rentals', 'nodessmall_vars', 'nodeswalk_vars']
m.filters = ['rent_sqft < 10']
m.model_expression = 'np.log1p(rent_sqft) ~ + 

np.log(res_sqft_per_unit) + \
np.log(units_500_walk+1) + np.log(sqft_unit_500_walk+2)  + \
np.log(rich_500_walk + 1) + np.log(singles_500_walk + 1) + \

np.log(elderly_hh_500_walk + 1) + \
np.log(children_500_walk + 1) + \
np.log(jobs_500_walk + 1) + np.log(jobs_1500_walk+1) + \
np.log(jobs_10000+1) + np.log(jobs_25000 + 1) + \
np.log(pop_10000+1) + np.log(pop_black_10000+1) + \
np.log(pop_hisp_10000+1) + \
np.log(pop_asian_10000+1)  '

m.out_column = 'pred_rent_sqft'
m.out_transform = np.expm1
m.name = 'hedonic_rent_sqft'

m.fit()
m.run()
mm.register(m)



Note: models were estimated using 2/3 of the data, retaining 1/3 to be used for validation

OLS RESULTS



ELASTICITIES

Variable Elasticity

Residential Sqft per unit -0.33



REGRESSION TREE



RANDOM FOREST

RF handles non-linear relationships 
between the dependent and 
independent variables

RF is invariant to scaling and translation 

RF is robust to irrelevant or highly 
correlated variables



RANDOM FOREST



DISTRIBUTION OF RESIDUALS

OLS Random Forest

Note: models were estimated using 2/3 of the data, retaining 1/3 for validation



PREDICTED VS OBSERVED

OLS Random Forest

R Squared .63 Accuracy Score .96



SPATIAL RANDOMNESS OF ERRORS

OLS Random Forest

Blue areas are under-predicted, red areas are over-predicted
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How do we get UrbanSim, a small-area model of urban growth typically 
estimated off of cross-sectional data, to approximate longitudinal 
observed data on urban growth?

Can we do it without dampening the model’s behavioral sensitivities?              
e.g. minimize geographic dummies and constants

MOTIVATING URBANSIM CALIBRATION



• Move relative spatial variation of simulated growth towards observed longitudinal patterns

• Proxy for unobserved costs and variables not accounted for by the  models as specified

• Incorporate more information from longitudinal data (model estimation is based on 

cross-sectional data)

TYPICAL GOALS OF MODEL CALIBRATION



UrbanSim modelWeights

Input: Base data

Predicted spatial 
patterns

A loss function measures the 
quality of the UrbanSim
model’s output.  The loss score 
is used as a feedback signal to 
adjust the weights.

Observed spatial 
patterns

Loss function

Loss score

Longitudinal data

Optimizer

Weight 
update

CALIBRATION



Vancouver 
2016

Model

Vancouver 
2017

Model

Vancouver 
2018

Infer UrbanSim parameters that would minimize error 
vs. observed longitudinal data.

mse(predictions,  
longitudinal_observed)

f(𝜃)   =

MODEL CALIBRATION



UrbanSim modelUrbanSim 
parameters

X
Generated 
sequences of 
urban data

URBANSIM SIMULATION:  “FORWARD MODE”



UrbanSim modelUrbanSim 
parameters

X
Compare
generated 
sequences of 
urban data with 
observed 
longitudinal 
data

Simulation over time

Inference

CALIBRATION



● Frame UrbanSim as a differentiable function
● Add objective function and utilize auto-differentiation libraries to get gradients
● Apply gradient descent

How:  reimplementing UrbanSim modules in “differentiable programming” frameworks

OUR CURRENT APPROACH



URBAN MODELS MEET DIFFERENTIABLE PROGRAMMING
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EXAMPLE OF A COMPUTATIONAL GRAPH IN URBANSIM
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Forward pass

Backward pass

EXAMPLE OF A COMPUTATIONAL GRAPH IN URBANSIM
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Calculate 
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URBAN DYNAMICS AS A RECURRENT SEQUENCE



● Some auto-diff libraries take python code and can compile to 
lower-level representation for hardware acceleration

● Trace gradients through programs, so probaflow-composed 
models are end-to-end differentiable

Probaflow

auto-diff libraries

CPU TPUGPU

PROBAFLOW:  LIBRARY FOR SPECIFYING/TRAINING DIFFERENTIABLE MODELS



● Multi-geographic-level optimization.  E.g. county + municipality + tract
● Jointly optimize model components over multiple years (better 

accounting for linkages between models so that overall dynamics are 
smoother)

● Sign constraints built-in:   makes parameter estimation easier
● Regularization default
● Custom loss functions:  build desirable properties of the simulation into 

the loss used to train model
● Multi-region learning + transfer learning

PROBAFLOW CAPABILITIES



STRATEGIES:
• Compare model results to observed data
• Sensitivity tests

LONGITUDINAL VALIDATION (BACKCASTING) EXAMPLE:
Observed tract change:

Change in number of households by tract, 2010 - 2015

Change in number of dwelling units by tract, 2010 - 2015

Change in employment by tract, 2010 - 2015

Change in non-residential square-footage by tract, 2010 - 2015

Model base-year:  2010

Simulate 2010 - 2015, compare observed tract change vs simulated, 

calculate prediction R2 /  RMSE

MODEL VALIDATION



Change in Housing Units 2006 – 2016
Observed vs Predicted
Correlation: .98

Change in Households 2006 – 2016
Observed vs Predicted
Correlation: .98

Change in Employment 2006 – 2016
Observed vs Predicted
Correlation: .98

Change in Housing Prices 2006 – 2016
Observed vs Predicted
Correlation: .69

UrbanSim models are validated by running simulations from 2006 – 2016 and comparing simulated to observed data by Census Subdivision

VANCOUVER URBANSIM APPLICATION: VALIDATION
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Bay Area network (derived from 
OSM/OSMnx)

223K nodes

560K edges

GPU-BASED TRAFFIC MICROSIMULATION AT METROPOLITAN SCALE



Pandana library using 
Contraction Hierarchies for 
Fast Computation of 
Shortest Paths

GPU Traffic Microsimulation

GPU-BASED TRAFFIC MICROSIMULATION AT METROPOLITAN SCALE

Calibration using minibatch gradient descent



GPU-BASED TRAFFIC MICROSIMULATION: VALIDATION

Closely match Uber movement 
speed data per edge, even with 
oversimplified intersection traffic 
controls

Edge speed limit and Uber 
standard deviations (2x) used to 
model Uber distributions more 
closely



GPU-BASED TRAFFIC MICROSIMULATION: PERFORMANCE



GPU-BASED TRAFFIC MICROSIMULATION: PERFORMANCE



Opportunities for leveraging ML to improve urban models

Differentiable programming offers strategy to improve 
longitudinal calibration without loss of sensitivity

GPU based Traffic Microsimulation has significant potential 
to improve realism, performance, scale of microsimulation

CONCLUSIONS

01

02

03



Q&A


