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Abstract. Transport modelling and in particular transport assignment is a well-
known bottleneck in computation cost and time for urban system models. The 
use of Transport Analysis Zones (TAZ) implies a trade-off between computa-
tion time and accuracy: practical computational constraints can lead to conces-
sions to zone size with severe repercussions for the quality of the transport re-
presentation in urban models. This paper investigates how a recently developed 
geographical topology called adaptive zoning can be used to obtain more favor-
able trade-offs between computational cost and accuracy than traditional TAZ. 
Adaptive zoning was developed specifically for representing spatial interac-
tions; it makes use of a nested zone hierarchy to adapt the model resolution as a 
function of both the origin and destination location. In this paper the adaptive 
zoning method is tied to an approach to trip assignment that uses high spatial 
accuracy (small zones) at one end of the route and low spatial accuracy (large 
zones) at the other end of the route. Opportunistic use of either the first or 
second half of such routes with asymmetric accuracy profiles leads to a method 
of transport assignment that is more accurate than traditional TAZ based as-
signment at reduced computational cost. The method is tested and demonstrated 
on the well-known Chicago Regional test problem. Compared with an assign-
ment using traditional zoning, an adaptive-zoning-based assignment that uses 
the same computation time reduces the bias in travel time by a factor 16 and 
link level traffic volume RMSE by a factor 6.4. 

Keywords: Transport · Assignment · TAZ · Zone 

1 Introduction 

Traffic assignment is a long-standing problem in transport modelling: it determines 
the level of traffic load as well as congestion/crowding which are essential for ap-
praising investment and regulatory policies. Owing to its importance, traffic assign-
ment methods have undergone continuous development. The simplest form of as-
signment is all-or-nothing which places all traffic between an origin and destination 
node on the minimal cost path. More advanced models recognize that as traffic is 
assigned to a link, a degree of congestion takes place which affects the time required 
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for traversing the link and hence the cost. In a static user equilibrium, traffic is as-
signed to the links such that all used paths from an origin to a destination carry the 
same cost, and no less costly path exists (Wardrop 1952). Over the years, methods of 
iterative weighted all-or-nothing assignment (Fukushima 1984) based on a more gen-
eral quadratic programming method (Frank and Wolfe 1956) have become firmly 
established. In recent years, bush-based assignment methods are providing a more 
efficient, though perhaps not yet as well understood, alternative (Bar-Gera 2002; Dial 
2006; Nie 2010). Other models of assignment include dynamics traffic assignment 
(Friesz et al. 1989), and stochastic user equilibrium (Lam et al. 1999). This paper is 
primarily concerned with all-or-nothing assignment, and its role in the Frank-Wolfe 
algorithm. Nevertheless, the computational load and cost of the assignment proce-
dures is a common challenge across the above spectrum of assignment methods. The 
phenomenal rise in the power of personal computing has not yet overcome the issue, 
and the continued expansion of functional city regions and the need for urban models 
to cover large areas will likely exacerbate the problem.  

Practically all transport models make use of Transport Analysis Zones (TAZ) for 
aggregate computations on groups of locations and individuals. Larger zones corres-
pond to a greater degree of aggregation and therefore less precision and reduced com-
putational cost. The use of zones in transport assignment as an approximation causes 
a bias, overestimating local traffic near the zone centroid and underestimating it else-
where. When the zones are large, the inability to assign intra-zonal traffic can lead to 
significant underestimation of traffic, whereas the bundling of groups of origins and 
destination to representative centroids leads to a mix of over- and underestimation. 
Without mitigation, the effect can culminate in excessive and spurious levels of mod-
elled congestion. The common workaround of introducing auxiliary nodes around a 
centroid spreads the traffic loads and devolves local overloading. However, the under-
lying problem of a bias in the distribution of local traffic is not overcome. A consider-
able body of research exists addressing the trade-offs involved in zone design and 
optimization of zone systems(Chang et al. 2002; Ding 1998; Martinez et al. 2005; 
Martinez et al. 2009; Viegas et al. 2009). 

This article proposes a reformulation of the assignment problem that creates new 
possibilities for simultaneously improving computational efficiency and precision of 
local traffic assignment, using the concepts of adaptive zoning. In first instance we are 
concerned with are for the all-or-nothing assignment which can be a further input to 
the static user equilibrium assignment based on the standard Frank-Wolfe algorithm 
and other assignment methods. The all-or-nothing assignment is most often solved 
using the Dijkstra shortest path algorithm. This algorithm finds the tree that represents 
all shortest paths between one single node and all others. With TAZ, the nodes that 
are considered as origins and destinations are the zone centroids. The aggregation 
error occurs as the actual origin and destination of trips are not the zone centroids. It 
should be noted that the error in the route from an origin to a destination is mainly 
near the origin and destination: the approximation by zone centroids means that traffic 
is routed from roughly the right location to roughly the right location, and it is only 
for the extremes of the trip that locational accuracy is crucial. Likewise, if we would 
find the route between a small zone and a large zone, we can expect it to be more 
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accurate near the small zone than near the large zone. This paper aims to exploit this 
last consideration: the rationale is that for a given origin and destination we find two 
routes: one from a large zone containing the origin to a small zone containing  
the destination, and another from a small zone containing the origin to a large zone 
containing the destination. Of both routes we will only assign traffic to the more accu-
rate half. 

Thus the assignment takes place twice, the enhanced degree of aggregation at one 
end of the trip provides opportunity for computational advantage. There are two ar-
guments to increase to degree of aggregation at greater distances. Firstly, from the 
point of view of geometry, at greater distances the same angular error corresponds to 
a greater locational error. Thus if we are concerned with traffic heading off in the 
right direction zone size should increase with distance. Secondly, the number of trips 
between locations generally reduces with distance, thus for greater distances we can 
allow for a greater error than for smaller distances. The recently introduce geographi-
cal topology of adaptive zoning (Hagen-Zanker and Jin 2012; Hagen-Zanker and Jin 
2011a) allows to model spatial interaction using zone sizes that adapt to the distance 
over which interactions take place.  

Adaptive zoning was introduced by Hagen-Zanker & Jin (2011a) as an alternative 
method for representing geographical space in the context of spatial interactions. In 
some transport models, the zoning scheme is defined such that the strongest concen-
tric flows of spatial interaction are represented in more detail, such as in a transport 
model of London and South East England where the zones become progressively 
larger away from central London (Jin et al, 2002). In such cases the zone plan is adap-
tive to the amount of traffic into and out from one group of zones (i.e. in central Lon-
don), but does not account for the fact that each and every zone interacts more strong-
ly with some zones than with others. Adaptive zoning takes the adaptation to traffic 
patterns one step further and adapts the size of origin and destination zones to the 
strength of interaction (amount of traffic) between those zones. Since the strength of 
interactions typically diminishes with distance, it means that trips over short distances 
are modelled using small zones and long distances using large zones.  

Adaptive zoning is related to origin and destination sampling (Kristoffersson and 
Engelson 2009; Miller et al. 2007; Williams and Lindsay 2002). The idea of destina-
tion sampling is to reduce the computational load of transport models by modelling 
stochastically filtered destinations and apply a correction factor on the volume of 
traffic that reflects the sampling probabilities. Williams and Lindsay (2002) use a 
sampling strategy that is distance dependent, providing more precision at shorter dis-
tances. Adaptive zoning also reduces the computational load by reducing the number 
of destinations for each individual origin, but uses a system of zone aggregation in-
stead. 

Under adaptive zoning, each origin interacts with a smaller number of destinations 
when compared with a model using conventional TAZ zones. The reduction is 
achieved through a bespoke and adaptive aggregation of destination zones across the 
study area. At short distances from the origin zone there is little aggregation of desti-
nation zones, and the degree of aggregation becomes progressively higher further 
away from the origin. Origin-based adaptive zoning was used previously for the as-
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signment problem (Hagen-Zanker and Jin 2011a), but it was found that the aggrega-
tion at the destination end of trips – and the associated bias – overly constrained the 
applicability. This article extends the methodology by using both origin- and destina-
tion-based adaptive zoning in combination with bi-partitioned assignment: the first 
half of the trip is assigned on the basis of an origin-based adaptive zoning system and 
the second half of the trip on the basis of a destination-based adaptive zoning system. 
This reaps the advantages of adaptive zoning, without being exposed to the negative 
side-effects arising from aggregating distant zones. 

Earlier articles introducing and exploring adaptive zoning demonstrated its poten-
tial for traditional spatial interaction modelling (Hagen Zanker and Jin, 2012) and 
city-scale mode choice modelling (Hagen Zanker and Jin, 2013). The current paper is 
the first to successfully apply adaptive zoning to the computational bottleneck of 
transport assignment and is intended as a step towards full adaptive zoning based 
urban modelling. This article presents the methodology for a bi-partitioned assign-
ment with adaptive zoning and all-or-nothing assignment. The methods are demon-
strated with the well-known Chicago Regional road transport network, which is one 
of several commonly used networks for testing and benchmarking assignment algo-
rithms (Bar-Gera 2010). 

2 Methods 

2.1 Terminology 

The traffic network is represented as a weighted graph, where the links (edges) in the 
graph are road segments that are connected at the nodes (vertices). All trips to and 
from a zone are modelled as if they are starting or ending from a designated node in 
that zone called the centroid. The edge weights represent the costs of travelling typi-
cally in the form of a generalized cost that includes travel time, distance and tolls. 

In this article the terms origin and destination refer to the start- and the end nodes 
of trips. The terms source and target on the other hand, refer to the role of nodes in 
the assignment algorithm. Each sub-problem assigns traffic from one source to mul-
tiple targets. When the source is an origin, the targets are destinations and the sub-
problem is called origin-based. Conversely, a destination-based sub-problem assigns 
trips from multiple origins (targets) to a single destination (source), using a reverse 
assignment.  

2.2 Network Assignment 

The input to network assignment is an OD matrix that specifies the number of trips 
between each origin and destination pair. A second input is the weighted graph that 
represents the transport network. The purpose of all-or-nothing assignment then is to 
allocate the trips of each OD pair to the shortest path between the origin and destina-
tion and thus establish link intensities. The least-cost paths in the network can be 
found using the Dijkstra algorithm (Dijkstra 1959). The algorithm builds a shortest 
path tree from one source node (a zone centroid), to all nodes in the network. The 
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algorithm starts as an empty tree and grows by successively adding nodes to the tree 
from the source node outwards. Once all the target zone centroids have been added, 
the shortest paths for the source zone are complete and the algorithm can be termi-
nated. The Dijkstra algorithm provides the following information:  

• ( ),
,
D N s
l tp ,indicating whether link l is on the path from node s to t in network N  

• ( ),D N s
vd ,the shortest path distance from node s to v in network N  

For convenience, the following intermediate variables are defined:  

 ( ) ( ) ( )( )=
1 2

, , ,min ,D N s D N s D N s
l l la d d  (1) 

 ( ) ( ) ( )( )=
1 2

, , ,
, ,max ,D N s D N s D N s

l l t l tb d d  (2) 

 ( ) ( )=, ,1
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D N s D N s
t th d  (3) 

where link l connects the nodes l1 and l2. 
( ),D N s

la is the shortest path distance to the 

nearer of l1 and l2, and ( ),D N s
lb  is the shortest path distance to the further, and ( ),D N s

th is 

the half-way distance between nodes s and t. The D(N,s) superscript is used to indi-
cate that the associated variable are found though one application of the Dijkstra 
shortest path algorithm on the network N and the source node s. 

The status of a link relative to the shortest path between s and t can be classified in 
four categories:  

• not part of the shortest path, 
• part of the first half of the shortest path, 
• part of the second half of the shortest path, or 
• partially belongs to the first half and partially to the second half. 

Using these categories the proportion of a link belonging to the first half of the short-
est path is: 
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where, ( )′ ,
,
D N s
l tp is the proportion of link l that is on the first half of the shortest path 

from s to t. The proportion for the second half of the path follows naturally: 
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where, ( )′′ ,
,
D N s

l tp is the proportion of link l that is on the second half of the shortest path 

from s to t.  
All-or-nothing assignment can be expressed as follows: 

 ( ) ( )= ∀ ∈,
,, ij

i j

D N ia
l l jx T l NN T p  (6) 

where xl(N,T) is the traffic on link l, when traffic matrix T is assigned onto network N 
on the basis of shortest paths. Alternatively, the all-or-nothing assignment can be 
expressed as follows: 

 ( ) ( ) ( )= ∀ ∈′ ′+ ,,
. ,,

R

ij ij
i j j i

D N jD N iAN
l l j l ix T T l NN T p p  (7) 
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where NR is the reverse graph of N; i.e., link l1– l2 in N corresponds to l2– l1 in NR
. 

Equations (7) and (8) assume that there is only a single shortest path between two 
nodes. In reality there can be multiple paths of identical cost, therefore a path inde-
pendent tie-breaking mechanism should be used.  

2.3 Adaptive Zoning 

Adaptive zoning (Hagen Zanker and Jin, 2012) consists of two elements: zone hie-
rarchy and zone neighborhood. The lowest level of the zone hierarchy consists of 
atomic zones and can be formed by a traditional zone systems. Higher levels of the 
hierarchy are formed by the subsequent amalgamation of zones into progressively 
larger aggregated zones. The top level of the zone hierarchy is a single zone that cov-
ers the whole study area. When each aggregated zone is formed by the amalgamation 
of two other zones (atomic or aggregated), then the total number of aggregated zones 
is one below the number of atomic zones. Thus for a system consisting of n atomic 
zones, there are in total 2n-1 zones in the hierarchy. 

The zone neighborhood specifies for each atomic zone a specific set of zones 
(atomic or aggregated) that it interacts with. These zones are selected from different 
levels in the zone hierarchy; at short distances from the atomic zones neighboring 
zones are small and selected from low levels of the hierarchy and at further distances 
they are large and selected from high levels in the hierarchy. Each neighborhood is a 
zone-system in its own right that covers the whole study area. Thus, the interaction 
between two locations in the model area is spatially represented by a zone pair con-
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sisting of one atomic and one aggregated zone, whereby the size of the aggregated 
zone is a function of distance.  

As atomic zones interact with small aggregated zones nearby and large aggregated 
zones at a large distance, it is implied that large aggregated zones interact with atomic 
zones at large distances and small aggregated zones interact with atomic zones at 
short distances. We call the set of atomic zones that interact with one aggregated 
zone, the inverse neighborhood of that zone.  

The algorithms that form the zone hierarchy and neighborhood are based on the 
distance between zones as well as the size of zones in terms of traffic generated. This 
paper uses a point sampling approach to estimate Euclidean distances between zones 
(Hagen-Zanker and Jin, 2011). Upon amalgamation distances for the aggregated zone 
are determined as the weighted average of the constituent zones. 

 ∪

+
=

+
, ,

,
a i a b i b

i a b
a b

A d A d
d

A A
, (9) 

where di,j is the distance from zone i to j, Aa is the area of zone a, and ∪a b is the 
zone that amalgamates a and b. 

The zone hierarchy is created following the procedure of Hagen Zanker and Jin 
(2012) and iteratively merges the pair of zones leading to the smallest increment in 
the estimated error for a spatial interaction model: 

 
β β β∪ ∪

∪= − −, , ,

,
a b a b a a b bd d djoin

a b a b a bc D e D e D e , (10) 

where the algorithm joins the pair of zones a and b with lowest value for, Da measures 
the size of destination zone a (here the number of trips destined for that zone),  is the 
distance sensitivity parameter of a best-fitting model.  

The creation of the neighborhood is based on an iterative approach whereby in first 
instance the neighborhood consists of the top level of the zone hierarchy. Then, itera-
tively one zone in the hierarchy is subdivided considering both the size of the zone (in 
terms of distance) and the strength of the interaction. This iteration takes place until 
the neighborhood consists of the required number of zones. 

  =, , ,
split
i j i j j jc T d , (11) 

where ,
split
i jc is the criterion for subdividing the aggregated zone j in the neighborhood 

of zone i. The zone j with the highest value for ,
split
i jc is subdivided into its constituent 

parts. Ti,j is the number of trips from i to j.  
Using adaptive zoning, the original interaction matrix T can be aggregated in two 

ways; either the origin zones are aggregated, resulting in TO or the destination zones 
are aggregated, resulting in TD. Using both these matrices the all-or-nothing assign-
ment of equation (8) can be approximated by: 

 ( ) ( ) ( )≈ ∀ ∈′′ ′′+ ,,
, ,,

R

i j j i

D N jD N iAN O D
l ij l j ij l ix T T l NN T p p  (12) 
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Note that using this system, the source of the assignment is always an aggregated 
zone. Which means that the assignment takes place for one inverse neighborhood at a 
time: each application of the Dijkstra shortest path algorithm determines the routes 
between one aggregated zone and all the atomic zones that it interacts with. The rela-
tionship between zone size and distance means that the Dijkstra shortest path algo-
rithm finds a small tree for small zones and a large tree for large zones. This relation-
ship is the core underlying the efficiency gain of the proposed method.  

2.4 Bias Correction 

The adaptive-zoning based assignment introduces a new bias: when aggregating 
source zones, traffic that would originally go to the centers of all of its component 
zones will now go to only one center. The distance from a target to its aggregate 
source will be different from the average distance to all the original source zones. 
This difference is likely to be systematic, because the distribution of trips over zones 
is not random. It is not feasible to calculate the difference exactly, because that would 
undo the efficiency gain of using the adaptive zoning system. However by assuming a 
correlation between network distances and Euclidean distance, the following bias 
correction factor can be calculated: 

 ( )
∈

∈

−
=

−,

it s t
i s

s t
it i t

i s

T p p
f

T p p
 (13) 

where s is an aggregate source zone of which the constituent atomic are indicated by 
i. pz gives the geographical coordinates of the center of zone z. The correction factor 
is applied by modifying the position of the half-way point, yielding the following 
modified form of equation (3): 

  ( ) ( )=, ,1
, 2

D N s D N s
t s t yh f d  (14) 

3 Results 

The model is applied to the Chicago Regional road transport network, which is one of 
several commonly used networks for testing and benchmarking assignment algo-
rithms (Bar-Gera 2010). It was originally developed by the Chicago Area Transporta-
tion Study (CATS). The model area comprises 1,790 zones, 12,982 road nodes and 
39,018 road links. (Figure 1-a,b). The assignment procedure that is followed is for the 
user equilibrium using the Frank-Wolfe algorithm that relies on an iterative evaluation 
of the all-or-nothing assignment presented in this paper. For details we refer to the 
Annex and more in particular to Van Vliet (1987).  

For comparison purposes an alternative model is created that halves the number of 
zones (895 zones, Figure 1-c), as well as a series of adaptive zoning based models 
with varying degrees of aggregation (Figure 1-d). The only difference between these 
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models and the original 1,790 zone model is due to the aggregation and approxima-
tion methods. The deviation from the 1,790 zone mode is therefore a measure of the 
approximation error. The approximation error is measured by means of the systematic 
error in total travel time in the model (travel time bias), the root mean squared error 
(RMSE) in link flows and travel time as well as the correlation between in link traffic 
intensity.  

The application of the models shows that with increasing degrees of aggregation, 
the adaptive zoning system requires less time, but also increases approximation error, 
in all measures of aggregation error (Table 1). The adaptive zone model with a neigh-
borhood size of 200 zones is nearest to the 895 zone system in terms of computation 
time. A comparison of the model results of these two runs shows that the adaptive 
zoning based model has substantially better performance: the correlation is near perfect 
(0.998 compared to 0.956), the bias in travel times is removed (0.64% instead of 10%) 
and the link level error is drastically reduced (Link volume RMSE reduces from 221 to 
33 vehicles, link cost RMSE reduces from 0.33 to 0.075 seconds).  

Table 1 also reports on the number of iterations that was necessary for the Frank-
Wolfe algorithm to converge. It shows that the traditional aggregation method reduces 
the number of iterations relative to the 1790 zone system; this is consistent with the 
downward bias in traffic volumes, which leads to lower levels of congestion and in 
turn less spreading over multiple paths. Under adaptive zoning the required number of 
iterations remains practically the same for all runs, suggesting that the convergence of 
the algorithm is not materially affected by the adaptive zoning approximation. 

Table 1. Comparison between traditional and adaptive zoning based models  
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Ground truth 1790 * 1790 313 1 0 0 0 32 

Traditional 895 * 895 193 0.954 -0.10 221 0.33 26 

Adaptive 1790 *50 158 0.996 -0.018 85 0.10 33 

Adaptive 1790*100 168 0.997 -0.010 47 0.087 33 

Adaptive 1790*150 188 0.997 -0.0083 38 0.085 33 

Adaptive 1790*200 195 0.998 -0.0064 33 0.075 31 

Adaptive 1790*300 231 0.998 -0.0035 25 0.076 32 
 
Notes:Computation is on a 2.93 GHz Intel® Core™desktop computer using 8 pro-

cessors and Windows 7, 64 Bit. Computation time excludes the time for generating 
the zone system, which is in the order of 15s. Link flow correlation is Pearson’s corre-
lation with ground truth of traffic volume over all links. Travel time bias is calculated 

as ( )model ref refT T T− , where model model model
l l

l

T x t= and ref refers to the ground truth 

model.  
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Fig. 1. Transport network and alternative zone systems for the Chicago study area  

 

Fig. 2. Comparison of the tree sizes of the sub-problems. The distribution of sub-problem sizes 
explains the variations in calculation time among the alternative assignment runs.  

 

ying.jin@aha.cam.ac.uk



 Adaptive Zoning for Efficient Transport Modelling in Urban Models 683 

The outcomes for a range of different neighborhood dimensions—from 50 zones to 
300 zones—indicate a gradual deterioration with decreasing neighborhood size. How-
ever, even for the most severe aggregation (of 50-zone neighborhoods) the results 
remain reasonable and considerably better than the traditional zone system at 895 
zones. Figures 2 sheds more light on the use of computation time by the algorithms. It 
shows how the traditional approach creates a sub-problem for each zone, whereby the 
size of each sub-problem, measured as the size of the shortest path algorithm tree is 
roughly constant and near to the total number of nodes in the network. When a coars-
er scale traditional zone system is used, the number of sub-problem reduces, but the 
size of the individual sub-problems remains roughly the same. The adaptive zoning 
doubles the number of sub-problems, but it drastically reduces the size of the sub-
problems.  

4 Discussion 

4.1 Scalability 

Hagen-Zanker & Jin (2011) explored the computational complexity of adaptive-
zoning-based assignment and found that the complexity under adaptive zoning is O(n 
log n) and using traditional zoning O(n2 log n), where n is the number of zones. That 
analysis depends on the assumption that the number of zones is proportional to the 
number of links as well as the size of the study area. Here we explore in more depth 
the nature of this complexity and consider separately the effect of study area size, the 
number of zones and the size of the network. In order to consider these independently, 
we define zone density as the number of zones per area, and link density as the num-
ber of links per area.  

One crucial assumption is about the network size of the sub-problems. From the 
nested nature of the zone hierarchy that provides the aggregated zones, it follows that 
the size of aggregated zones is exponentially distributed. Furthermore the network 
size for a sub-problem is a positive function of the zone size; larger zones are found at 
further distances and hence the radius of an inverse neighbourhood is a positive func-
tion of zone size. Finally, there is a lower limit for zone sizes. Consequently, it is 
reasonable to assume that the network size for sub-problems is negatively exponen-
tially distributed and in any case there is a negatively exponential function under 
which the distribution will fit. Figure 2 confirms that this is a reasonable assumption: 
when the level of aggregation increases, the distribution indeed takes form of an ex-
ponential decay curve. 

The cost of one sub-problem of the Dijkstra algorithm is O(m log m) where m is 
the number of nodes in the network. For n sub-problems this gives: 

 ( )
=

=
1

log
n

x x
x

O dijkstra O m m   (15) 

where mx is the size of the sub-problem. Approximation by a continuous integral 
function and considering the network size constant, as under traditional zoning, gives: 
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 ( ) ( )= = =
0

log log
n

xO dijkstra m m O m mdx O nm m   (16) 

Under adaptive zoning mx is assumed to be exponentially distributed: 

 ( ) ( )β β β− − −= = =
2

0

log log
n

x x x
xO dijkstra m me O me me dx O m m   (17) 

Substituting, m and n for the appropriate products of study area, link density, and zone 
density gives: 
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ρ ρ

= +

= +

2

2

log log

log log

l z l

l l

O dijkstra traditional O A A

O dijkstra adaptive O A A
  (18) 

where A is area, z is zone density and l is link density. Table 2 summarizes the re-
sults for each individual variable, considering all others independent. There is no 
improvement in scalability with respect to link density, which means that if the sole 
objective is to increase the number of links in the model, then adaptive zoning offers 
no additional advantages. Also under adaptive zoning the complexity as a function of 
study area reduces by an order of magnitude, making it highly suited for large area 
applications such as city region and country level models. Finally it states that in the 
limiting case the computational cost is independent of the size of the atomic zones. 
This is a striking and perhaps counterintuitive result, it is however a direct conse-
quence of the developed method: Each invocation of the Dijkstra shortest path algo-
rithm uses an aggregated zone as its source and finds to path to all atomic zones. The 
cost of the algorithm is determined by the size of the tree, which in turn is determined 
by the furthest destination: the number of destination zones is inconsequential. 

Table 2. Complexity by variable under traditional and adaptive zoning 

Variable Traditional Complexity Adaptive Zoning Complexity 
Area (A) O(A2log A) O(A log A) 
zone density ( z) O( z) O(1) 
link density ( l) O( l) O( l) 

5 Conclusion 

This paper presents a new approach to road traffic assignment that partitions each 
origin-destination route into the first and the second half, which are assigned by sepa-
rate sub-problems of computation. The partition opens new opportunities for adaptive 
trade-offs between computation time and accuracy. Specifically, the paper demon-
strates that a bi-partition assignment algorithm with adaptive zoning is a significantly 
more efficient method. In the worked case using the benchmark Chicago regional 
road network, we find that when the precision of the zone system is constrained by 
computation time, the adaptive zoning system is far more precise than a traditional 
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zone system. The bias in modelled travel times reduces from 10% to 0.64% when 
using adaptive zoning, the RMSE of link volume and link traversal cost reduce by 
factors of 6.4 and 4.4 respectively. Moreover, our understanding of the structure of 
the algorithm and an analysis of the computational complexity imply that the detail at 
which traffic arriving in and departing from zones can be refined without affecting the 
computational cost. Finally the model scales much better with the size of the study 
area (A) the complexity of the model is O(A log A) instead of O(A2 log A) which 
makes it very attractive for modelling large study areas such as those confronted by 
policy analysts when assessing infrastructure investment and policy initiatives across 
mega-city regions and nations. 

Annex 

In transport systems typically the time to traverse a link (and hence the cost) is a func-
tion of the free flow time, link capacity and traffic flow volume. This article uses the 
following common model: 

 

= +1
p

f l
l l

l

t
x

t b
c

  

where tl is the link traversal time, f
lt  is the free-flow traversal time, xl is the traffic 

flow volume, and cl is the link capacity, b and p are parameters, here b=0.15 and p=4. 
The co-dependence between tl and xl makes assignment problems more complex. 

The Frank-Wolfe assignment algorithm accounts for the co-dependence by means of 
iteration. In the first iteration, traffic is assigned on the basis of free-flow costs and the 
resulting link traffic loads are used to update the link costs. From then on, each itera-
tion reassigns a fraction of the overall flows on the basis of the updated costs. 
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where n indicates the iteration number and λ n is the convergence factor. For the cal-

culation of λ n  as well as the stopping criterion called the relative gap, we refer to 
Van Vliet (1987). The assignment algorithm iterates until a relative gap of 0.01 is 
achieved. 
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Abstract. Different motivation are related with the analysis of Spatial Big Data 
(SBD). Google Earth, Google Maps, Navigation, location-based service allow 
to obtain a great amount of geo-referenced data. Often spatial datasets exceed 
the capacity of current computing systems to manage, process, or analyze the 
data with reasonable effort. Considering SBD history methodology as Data-
intensive Computing and Data Mining techniques have been useful. In this con-
text the problem regards the analysis of of high frequency spatial data. In this 
paper we present an approach to clustering of high dimensional data which al-
lows a flexible approach to the statistical modeling of phenomena characterized 
by unobserved heterogeneity. We consider the MDBSCAN and compare it with 
the classical k-means approach. The applications concern a synthetic data set 
and a data set of satellite images. 

Keywords: Spatial data mining · Clustering algorithms · Arbitrary shape of 
clusters · Efficiency on large spatial databases · Handling noise · Lagrange-
Chebychev metrics · Image analysis 

1 Introduction 

The rapid developments in the availability and access to spatially referenced informa-
tion in a variety of areas, has induced the need for better analysis techniques to under-
stand different phenomena. In particular spatial clustering algorithms, which groups 
similar spatial objects into classes, can be used for the identification of areas sharing 
common characteristics. 

Clustering is an unsupervised classification of patterns - observations, data items, or 
feature vectors - into groups or clusters [6]. Cluster analysis can be defined as the organ-
ization of a collection of patterns - usually represented as a vector of measurements, or a 
point in a multidimensional space - into clusters based on similarity. 

The clustering problem has been considered in many contexts and by researchers in 
different disciplines. It is useful in several exploratory pattern-analysis, grouping, 
decision-making and machine-learning situations, including data mining (see e.g. [5]), 
spatial data mining (see e.g. [1], [2], [8]), document retrieval, image segmentation, 
and pattern classification. 

Clustering techniques have been recognized as primary Data Mining methods for 
knowledge discovery in spatial databases, i.e. databases managing 2D or 3D points, 
polygons etc. or points in some d-dimensional feature space (see e.g. [8], [13, [14]]). 
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